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COMMENT

Comment on ‘The capacity of the Hopfield model’

Anton Bovier†
Weierstraß Institut f̈ur Angewandte Analysis und Stochastik, Mohrenstrasse 39, D-10117 Berlin,
Germany

Received 16 July 1997

Abstract. In a recent paper ‘The capacity of the Hopfield model’, Feng and Tirozzi claim to
prove rigorous results on the storage capacity that are in conflict with the predictions of the
replica approach. We show that their results are in error and that their approach, even when the
worst mistakes are corrected, does not give any mathematically rigorous results.

The paper [FT] by Feng and Tirozzi addresses the interesting question of the storage capacity
of the Hopfield model. This value, namely the maximal ratio between the number of patterns
to the number of neurons for which the Hopfield model works as a memory was first
reported numerically by Hopfield to be about 0.14, and a value close to that was obtained
analytically by Amit et al [AGS] with the use of the replica trick. Refined estimates
using replica symmetry-breaking schemes were obtained later. However, the replica trick
is mathematically not rigorous, and there have been many attempts to obtain such results in
a mathematically rigorous way. The best results in this respect so far were rigorous lower
bounds onαc by Newman [N] which were recently improved by Loukianova [L1] and
Talagrand [Ta]. These bounds are still by at least 50% off the expected value. Obtaining
upper bounds onαc has proven to be a much more difficult issue and the only result to our
knowledge was obtained very recently by Loukianova [L2], who proved that for anyα > 0,
the minimum of the Hamiltonian is at some finite distance away from the patterns, and that
asα tends to infinity, this distance tends to at least 0.05. Although her proof is very nice
and interesting, the numerical values are far from satisfactory.

The main result that Feng and Tirozzi claim to prove ‘rigorously’ is that, if a
fraction δ of errors in the retrieval is allowed, then the criticalα = α(δ) is given by
α(δ) = (1− 2δ)2/(1− δ)2.

This result appears obviously false, since it givesα(δ) close to one ifδ is chosen close
to 0, andα(δ) close to zero, ifδ is close to 1/2, contrary to whathas to be the case. One
might be first tempted to believe that this formula forα(δ) is a misprint, but it is repeated
consistently in the paper and moreover based on this formula, the authors argue that ‘the
replica trick approach to the capacity of the Hopfield model is only valid in the caseαN → 0
(N →∞)’.

Given the very strong and surprising claims made in this paper, it appears worthwhile
to analyse their ‘rigorous proof’ in some detail in order to avoid misconceptions.

† E-mail address: bovier@wias-berlin.de
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Feng and Tirozzi study the fixpoints of a deterministic gradient dynamic of the Hopfield
model, i.e. solutions of the equation

σi = sign
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µ

i ξ
µ

j σj

)
. (1.1)

Since they are interested in solutions ‘near’ one, say the first, pattern,ξ1, it is reasonable
to index the configurationsσ by the setB ⊂ {1, . . . , N} on which they differ fromξ1, i.e.
set†

σBi ≡
{
ξ1
i if i 6∈ B
−ξ1

i if i ∈ B.
(1.2)

The fixpoint equation (1.1) can then be written in the form
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After some elementary algebra, we can rewrite this as
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(1.4)

where|B| denotes the cardinality of the setB. Let us define the random variables‡

Zi(N,B) ≡ ξ1
i
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> 0. (1.5)

Then (1.4) can be written as

Zi(N,B) > −(1− 2|B|/N) if i 6∈ B
Zi(N,B) 6 −(1− 2|B|/N) if i ∈ B. (1.6)

The arguments of [FT] relies basically on their observation in equation (4) that for any
fixedB, the random variablesZi(N,B) converge in distribution to−√αζi§ (assuming that
p(N)/N tends toα), ‘by the central limit theorem’, where theζi are i.i.d. (independent
identically distributed) standard normal variables. The remainder of their analysis is then
based on the study of the distribution of thekth maxima of i.i.d. Gaussian random variables.

This procedure involves an interchange of limits that is not justified. From the central
limit theorem (CLT), one obtains the convergence of the variables in (1.1) in the sense that
for a givenB, for any fixed, finite setI of indices, the family {Zi(N,B)}i∈I converges in
distribution to a family of i.i.d. Gaussians. This doesnot imply that e.g. maxNi=1Zi(N,B)

converges, for example, in distribution to the same limit as maxN
i=1

√
αζi ! Maxima are

not continuous functions with respect to the product topology, and therefore convergence
in the distribution and the taking of maxima cannot be interchanged. (Take the following
example: letXi(N) ≡ ζi , if i < N , andXN(N) = N . This family converges to i.i.d.
standard Gaussians, asN tends to infinity, but the maximum (which is alwaysN ) is totally
different from the maximum ofN i.i.d. Gaussians, which behaves like

√
lnN !)

† I regret to have to introduce some notation that is different from that of Feng and Tirozzi.
‡ In [FT] these are defined in (4), and given the strange nameg(N, p(N)), which makes reference neither to
their dependence on the indexi nor the setB. We need these attributes to make meaningful statements later.
§ The minus sign appearing here is rather unconventional, given thatζi and−ζi have the same distribution.
However, it plays a role in the course of the mistakes they make later.



Comment on ‘The capacity of the Hopfield model’ 7995

One should keep in mind that it is precisely this difficulty that has prevented reasonable
upper bounds onαc in the past. Loukianova, for instance uses a very clever idea of ‘negative
association’ to compare thedependentvariablesZi(N,B) to independent ones, but for this
a price had to be paid that prevented sharp estimates.

While at this point it is clear that the arguments in [FT] are in no way ‘rigorous’, it
may be still interesting to follow the sequel of their arguments in some more detail. Let us
first consider the case of ‘perfect retrieval’, section 3.1. HereB is the empty set and their
result relies on the assumption that the distribution of the maximum overi of theZi(N, ∅)
converges to that of i.i.d. Gaussians, which is not justified. There is no surprise in the fact
that they obtain the same result as McElieceet al [MPRV], because the heuristic arguments
of [MPRV] (which do not claim to give a rigorous proof!) are identical to those put forward
here. I should stress that to my knowledge there is no rigorous proof of the ‘if and only if’
statement.

In section 3.2 [FT] study the case of non-perfect retrieval, i.e. they look for the critical
α(δ) such that a fixpointσB will exist with |B| = δN . The way they seem to argue is
as follows: Zi(N,B)/

√
α converges to family of i.i.d. Gaussian random variables. Then,

what is the fraction ofN i.i.d. Gaussians that is larger thanx? If this number isg(x), then
g(−(1− 2δ)/

√
α) of theZi(N,B) will be larger than(1− 2δ), and so we will find a set

B of sizeδN precisely when(1− δ) = g(−(1− 2δ)/
√
α)! At this point the authors claim

(see the first phrase on page 3386, and figure 1) that the [xN ]-largest of theN Gaussians
ζi is of orderx, so that [xN ] of them would be smaller thanx, i.e. [xN ] of the −√αζi
would be larger than−√αx which means that they takeg(x) = −x. It does not become
clear where they draw this claim from, but it is clear that it is totally wrong and leads to
their absurd main result.

One may ask whether their arguments can be improved. First, how can we compute the
size of the set of indices for whichZi(N,B) > x? Obviously, one would want to study
the quantity

GN(x, B) ≡ 1

N

N∑
i=1

1lZi(N,B)>x (1.7)

which is nothing but (one minus) the distribution function of the empirical measure of the
variablesZi(N,B). Now, if we replaced all theZi(N,B) by

√
αζi (I take the freedom to

drop their pointless minus sign), then by the strong law of large numbers

lim
N↑∞

1

N

N∑
i=1

1l√αζi>x =
1√
2π

∫ ∞
x/
√
α

e−
1
2y

22 dy ≡ 8(−x/√α) a.s. (1.8)

This would then yield the somewhat more reasonable looking resultα(δ) = (1 −
2δ)2/(8−1(1− δ))2. But is that result to be trusted? First, the CLT again cannot justify the
passage to the Gaussians, because just as with the maxima, the empirical measure is not a
continuous function. If one is somewhat optimistic, one may hope to prove convergence
of GN(x, B) to a Gaussian distribution function,for fixedB. (For example, Talagrand [Ta]
proves this for the caseB = ∅.) But even that would by no means imply thatZi(N,B)
itself is becoming independent ofB, asN increases, and that the setB ′(B) for which
Zi(N,B) > −(1− 2δ) would coincide withB. One might want to argue that there should
be a setB for which B ′(B) = B, but then there is no reason why for thisrandomset the
convergence of the empirical measure should hold. To make such a statement, one would
at least have to get control on the convergence ofGN(x, B) uniformly in the different
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possible setsB, i.e. we should need some estimate like

P
[

sup
B⊂{1,...,N}

‖GN(x, B)−8(x)‖ > ε

]
↓ 0 (1.9)

for all ε > 0, for some norm‖ · ‖. It does not seem likely that such a result is true, let
alone that it can be proven. Note that the main difficulty here is that the number of sets
B is exponentially large, and precisely this fact is responsible for the relatively poor lower
bounds onαc that exist in the literature.

In conclusion, the paper by Feng and Tirozzi has unfortunately not contributed to
progress in the mathematical understanding of this interesting and challenging problem.
Even if the most obvious mistakes are corrected there remain fundamental problems in the
basic approach, and even the improved prediction onα(δ) is no more rigorous and rather
less convincing than the predictions of the replica approach.
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